Asynchronous Development

Lecture 4

Copyright © Politehnica Bucharest and Wyliodrin SRL 2025, licensed under CC BY-SA 4.0.

https://pmrust.pages.upb.ro/
https://www.wyliodrin.com/

Asynchronous Development

= Concurrency

= Asynchronous Executor

. Future S

= Communication between tasks

Concurrency

Preemptive and Cooperative

Bibliography
for this section

Brad Solomon, Async IO in Python: A Complete Walkthrough

https://realpython.com/async-io-python/

Preemptive
Concurrency

= MCUs are usually single corelll

= Tasks in parallel require an OS[2!

= Tasks can be suspended at any time

= Switching the task is expensive

m» Tasks that do a lot of I/O which makes
the switching time longer than the

actual processing time

1. RP2350 is a dual core MCU, we use
only one core €

2. Running in an ISR is not considered a
normal task €

SysTick

loop

SysTick

(ON]

scheduler alarm

.........................),_‘

Task2

save state for Task 1

restore state for Task 2

scheduler alarm

.........................)_‘

save state for Task 2

restore state for Task 1

(ON]

schedule

Task2

Taskl

wait forl hardware

Taskl

Asynchronous Executor

of Embassy

Bibliography
for this section

Embassy Documentation, Embassy executor

https://embassy.dev/book/#_embassy_executor

Tasks

m #[embassy_executor::main]
= starts the Embassy scheduler
= defines the main task
= #[embassy_executor: :task] -definesanew
task
= pool_size -isoptional and defines how many
identical tasks can be spawned
= the main task
= jnitializes the the led
= spawns the led_blink task (adds to the
scheduler)
= uses .await to give up the MCU while waiting

form the button

embassy_executor: :task(pool _size 2
async fn led_blink(mut led: AnyPin
Loop
led.toogle
Timer::after_secs(l).await

embassy_executor: :main
async fn main(spawner: Spawner

spawner.spawn(led_blink(led)).unwrap
info!("task started

Loop
button.wait_for rising _edge().await
info! ("button pressed

Tasks can stop the executor

= unless awaited, async functions are not executed

= tasks have touse .await inloops, otherwise they

block the scheduler

O 00 N O L1 D N N B

e o e T e e = T = =N
O 00 N O Ul A WN P O

#[embassy_executor: :task|
async fn led_blink(mut led: AnyPin) {
Loop {
led.toogle();

Timer: :after_secs(1);

#[embassy_executor: :main]|
async fn main(spawner: Spawner) {

Loop {

button.wait_for_ rising_edge().await;

info!("button pressed");

How it works

Empty Task Empty Task | ... Wait for
Task Task [Slot][Slot Event

...

I €es E
NVIC — ISR VD ey g Execute .
Event?

A /

= sleep when all tasks wait for events

= after an ISR is executed

= if waiting for events, ask every task if it can execute (if the IRQ was what the task was .await ing for)
= if a task is executing, continue the task until it .await s

» jfatasknever .await s,the executor does not run and never executes another task

Priority Tasks
(-
[Ta;k }[Ta:k }{Empst?’o'trask} {Empst}/o;rask} ______

IRQ Waits for

Event?

4

G
Swi

r 0\
Waits for
Event? -

v o, ‘
{ Task M Tk J[EmpstlymTask] [Em;gfojask]
S
#[interrupt]

unsafe fn SWI_TRQ_1() {
EXECUTOR_HIGH.on_interrupt()

3

#[interrupt]

unsafe fn SWI_TIRQ_0() {
EXECUTOR_MED.on_interrupt()

O 00 N O L1 AN W N B

NN NP RPRRRERRPE R R R R R
N P ® V00 NOU A WNROO

static EXECUTOR_HIGH: InterruptExecutor = InterruptExecutor: :new();
static EXECUTOR_MED: InterruptExecutor = InterruptExecutor::new();
static EXECUTOR_LOW: StaticCell<Executor> = StaticCell: :new();

#[entry |

fn main() -> ! {
// High-priority executor: SWI TRQ_1, priority level 2
interrupt::SWI_TRQ_1.set_priority(Priority::P2);
let spawner = EXECUTOR_HIGH.start(interrupt::SWI_IRQ_1);
spawner. spawn(run_high()).unwrap();

// Medium-priority executor: SWI TRQ O, priority level 3
interrupt: :SWI_IRQ_O.set_priority(Priority::P3);

let spawner = EXECUTOR_MED.start(interrupt::SWI_TIRQ_©0);
spawner. spawn(run_med()).unwrap();

// Low priority executor: runs in thread mode, using WFE/SEV
let executor = EXECUTOR_LOW.init(Executor: :new());
executor.run(| spawner| {

unwrap! (spawner. spawn(run_Llow()));

s

priority executors run in ISRs, lower priority tasks are interrupted

The Future type

a.k.a Promise inother languages

Bibliography
for this section

Bert Peters, How does async Rust work

https://bertptrs.nl/2023/04/27/how-does-async-rust-work.html

F u tu I‘ e Executor Future Hardware
poll()
(L >
enum Poll<T> { loop [until[the Future finishes all the requests to the Hardware]
Pending,
Re ady (T) , execute_next_action()
) ? g
. in_progress()
trait Future { | Qennnnmnmnmnnnnmmmmmnmnmnne o
type Output; performs the action in parallel
fn poll(&mut self) -> Poll<Self::Output>;
Poll::Pending
J B RRERRRCERRREEEERRPEEERRRES (45
sleeps until an event arrives
fn execute<F>(mut f: F) -> F::Output
sends an event when job is done (interrupt)
where
F: Future event
{ o o
Lloop { poli()
(6] -
match f.poll() {
Poll::Pending => wait_for_event(), read_value() R
Poll::Ready(value) => break value Value -
T e 0o
} Poll::Ready(value)
3 B PRRGGEREETERE
Executor Future Hardware

Implementing a Future

1 enum SleepStatus { impl Future for Sleep {
2 SetAlarm, type Output = ();
B WaitForAlarm,
4 } fn poll(&mut self) -> Poll<Self::Output> {
5 match self.status {
6 struct Sleep { SleepStatus: :SetAlarm => {
7 timeout: usize, ALARM.set_alarm(self.timeout);
8 status: SleepStatus, self.status = SleepStatus::WaitForAlarm;
e } Poll: :Pending
10 3
11 impl Sleep { SleepStatus: :WaitForAlarm => {
12 pub fn new(timeout: usize) -> Sleep { if ALARM.expired() {
13 Sleep { Poll::Ready(())
14 timeout, } else {
15 status: SleepStatus::SetAlarm, Poll: :Pending
16 } 3
17 } }
18 3} }
}

Executing Sleep

1mpl Future for SLeep { Executor Sleep ALARM
type Output = (); poll(
o—
loop [until the ALARM.expired() is true]
fn poll(&mut self) -> Poll<Self::Output> { _
match Sel, £ status { o set_alarm(self.timeout) R
SleepStatus: :SetAlarm => { Ok(0)
ALARM. set_alarm(sel £. timeout) ; triggers an interrupt after timeout
self.status = SleepStatus::WaitForAlarm; S
oll::Pending
Poll: :Pending R o
} sleeps until an interrupt is triggered ‘
SleepStatus: :WaitForAlarm => { raises IRQ_ALARM
if ALARM.expired() { N 0
Poll::Ready(())
} else { exipred()
Poll: :Pending il lexpired(]
} false
3 (¢]
} true
3 (<]
} Poll::Ready(())
e

Executor Sleep ALARM

Async Rust

async fn blink(mut led: Output<'static, PIN_X>) {
led.on();
Timer::after_secs(1l).await;
led.off();

}

Rust rewrites

struct Blink {
// status
status: BlinkStatus,
// local variables
led: Output<'static, PIN_X>,
timer: Option<impl Future>,

}

impl Blink {

pub fn new(led: Output<'static, PIN_X>) -> Blink {

Blink { status: BlinkStatus::Partl, led, timer: None }

}
fn blink(led: Output<'static, PIN_X>) -> Blink {
Blink: :new(led)

impl Future for Blink {
type Output = ();
fn poll(&mut self) -> Poll<Self::Output> {
loop {
match self.status {
BlinkStatus::Partl => {
self.led.on();
self.timerl = Some(Timer::after_secs(1l));
self.status = BlinkStatus::Part2;
3
BlinkStatus: :Part2 => {
if self.timer.unwrap().poll() == Poll::Pending {
return Poll: :Pending;
} else {
self.status = BlinkStatus: :Part3;

3
BlinkStatus::Part3 => {

self.led.off();
return Poll::Ready(());

Async Rust

= the Rust compiler rewrites async functioninto Future

» it does not know how to execute them

= executors are implemented into third party libraries

use engine: :execute;

async fn blink(mut led: Output<'static, PIN_X>) {
led.on();
Timer::after_secs(1l).await;
led.off();

#[entry |

fn main() -> ! {
blink();
blink().await;
execute(blink());

Executor

static TASKS: [Option<impl Future N None, N

fn executor
Loop

for task in TASKS.iter mut
if let Some(task task
if Poll::Ready(_ task.poll
*task None

cortex_m: :asm: :wfi

= this is a simplified version, Option<impl Future> does not work
= the executor is not able to use TASKS like this

= an efficient executor will not poll all the tasks, it uses a waker that tasks use to signal the executor

The Future trait

that Rust provides

trait Future {
type Output;

fn poll(mut self: std::pin::Pin<&mut Self>, cx:

3

= Pin to mut self ,which means that self

cannot be moved

= Context which provides the waker

= tasks are polled only if they ask the executor (by

using the wake function)

= embassy-rs provides the execution engine

&mut Context<' >) -> Poll<Self: :Output>;

Empty Task

Slot Slot

[Empty Task

Execute

Wait for
Event

Communication

between tasks

Bibliography
for this section

Omar Hiari, Sharing Data Among Tasks in Rust Embassy: Synchronization Primitives

https://dev.to/apollolabsbin/sharing-data-among-tasks-in-rust-embassy-synchronization-primitives-59hk

Simultaneous Access

Rust forbids simultaneous writes access

Taskl Resource Task?2
write
O >
write
done writing
4
done writing

Taskl Resource Task?2

Exclusive Access

we want to sequentiality access the resource

Taskl Resource Task?2
write
O >
write
PP PP PP PR PP PEP LR (2]
done writing
S ETETEPEEEPEPETEPEPLPCPETRTEPS (3]
write

Taskl Resource Task2

Synchronization

safely share data between tasks

= NoopMutex -used for data shared between tasks
within the same executor =

m CriticalSectionMutex -used for data shared
between multiple executors, ISRs and cores

= ThreadModeMutex -used for data shared between
tasks within low priority executors (not running in

ISRs mode) running on a single core

Task Task Empty Task Empty Task | Wait for
Slot Slot Event
A A A
Tno ! E
Waits for yes ;
SWiI
Waits for yes
—) --a
Y Y
Task Task Bty Taskc i} Empty Task (S Exit ISR
Slot Slot

ISRs are executed in parallel with tasks

embassy allows registering priority executors, that

run tasks in ISRs

some MCUs have multiple cores

https://docs.embassy.dev/embassy-sync/git/default/blocking_mutex/type.NoopMutex.html
https://docs.embassy.dev/embassy-sync/git/default/blocking_mutex/type.CriticalSectionMutex.html
https://docs.embassy.dev/embassy-sync/git/default/blocking_mutex/struct.ThreadModeMutex.html

Blocking Mutex

no .await allowed while the mutex is held

10 SHARED_DATA.lock(|f| {

11 let data = f.borrow_mut();
12 // edit data

13 f.replace(data);

14)¢

Async Mutex

.await is allowed while the Mutex is held, it will release the Mutex while await ing

10 {

11 let mut data = SHARED_DATA.lock().await;

12 // edit *data

13 Timer: :after(Duration::from _millis(1000)).await;

14 Y

Channels

send data from a task to another

Embassy provides four types of channels synchronized using Mutex s

Type

»ChanneLA

PriorityChannel

Signal

»PubSubChanneLA

Description

A Multiple Producer Multiple Consumer (MPMC) channel. Each message is only
received by a single consumer.

A Multiple Producer Multiple Consumer (MPMC) channel. Each message is only
received by a single consumer. Higher priority items are shifted to the front of the
channel.

Signalling latest value to a single consumer.

A broadcast channel (publish-subscribe) channel. Each message is received by all
consumers.

https://docs.embassy.dev/embassy-sync/git/default/channel/struct.Channel.html
https://docs.embassy.dev/embassy-sync/git/default/priority_channel/struct.PriorityChannel.html
https://docs.embassy.dev/embassy-sync/git/default/signal/struct.Signal.html
https://docs.embassy.dev/embassy-sync/git/default/pubsub/struct.PubSubChannel.html

:
Channel and Signal

sends data from one task to another

_Channel - A Multiple Producer Multiple Consumer (MPMC) channel. Each message is only received by a single
consumer.

Signal -Signalling latest value to a single consumer.

Task3

Taskl

Channel Distributor Task4

Task?2

Task5

https://docs.embassy.dev/embassy-sync/git/default/channel/struct.Channel.html
https://docs.embassy.dev/embassy-sync/git/default/signal/struct.Signal.html

PriorityChannel

sends data from one task to another with a priority

PriorityChannel -A Multiple Producer Multiple Consumer (MPMC) channel. Each message is only received
by a single |consumer. Higher priority items are shifted to the front of the channel.

Task3
Taskl
Priority 2 Distributor Taskd
Task2
Priority 1
Task5

https://docs.embassy.dev/embassy-sync/git/default/priority_channel/struct.PriorityChannel.html

*@
PubSubChannel =

sends data from one task to all receiver tasks

_PubSubChannel -A broadcast channel (publish-subscribe) channel. Each message is received by all
consumers.

Task3

Taskl

Channel Task4

Task?2

Task5

https://docs.embassy.dev/embassy-sync/git/default/pubsub/struct.PubSubChannel.html

Channel Example

1 enum LedState { On, Off }

2 static CHANNEL: Channel<ThreadModeRawMutex, LedState, 64> = Channel::new();
5

4 #[embassy_executor: :main]

5 async fn main(spawner: Spawner) {

6 // init led

7 spawner. spawn(execute_Lled(CHANNEL.sender(), Duration::from_millis(500))));
8 Loop {

S match CHANNEL.receive().await {

10 LedState::0On => led.on(),

11 LedState: :0ff => led.off()

12)

13 3

14 3

15

16 #[embassy_executor: :task]

17 async fn execute_led(control: Sender<'static, ThreadModeRawMutex, LedState, 64>, delay: Duration) {
18 let mut ticker = Ticker::every(delay);

19 Loop {

20 control .send(LedState: :0n).await;

21 ticker.next().await;

22 control .send(LedState: :0ff).await;

23 ticker.next().await;

Conclusion

we talked about

Preemptive & Cooperative Concurrency

= Asynchronous Executor

Future s and how Rust rewrites async function

Communication between tasks

